MARCH 2021 EBS 102J COLLEGE ALGEBRA 1 HOUR 30 MINUTES

Candidate's Index Number:	
Signature:	

UNIVERSITY OF CAPE COAST COLLEGE OF EDUCATION STUDIES SCHOOL OF EDUCATIONAL DEVELOPMENT AND OUTREACH INSTITUTE OF EDUCATION

COLLEGES OF EDUCATION FOUR-YEAR BACHELOR OF EDUCATION (B.ED) FIRST YEAR, END-OF-FIRST SEMESTER EXAMINATION, MARCH, 2021

MARCH 30, 2021

COLLEGE ALGEBRA

2:30 PM - 4:00 PM

SECTION B (60 MARKS)

Answer any THREE questions from this Section. Show working(s) clearly for each question.

1.

a. i. Write down the binomial expansion of $(1+x)^4$.

[2 marks]

ii. Use the result in (i) to evaluate $\left(\frac{5}{4}\right)^4$, correct to three decimal places.

[4 marks]

- b. There are 115 members in a club. Out of this number, 95 own a house or a car or a business, 30 club members own a house, 70 own a car and 23 own a business. It is known that 15 own both a car and a business; 12 own both a house and a business; and 13 own both a car and a house. Only *x* club members had a business, a car and a house.
 - i. Represent the information on a Venn diagram.
 - ii. Use the Venn diagram to calculate the number of club members who own:
 - α_1) a car, a business and a house;
 - α_2) a car only;
 - α_3) a house only;
 - α_4) exactly two of the properties.

[14 marks]

- 2.
- a. i. The houses along a street in a certain city are assigned odd numbers, starting from 3. If the last house is numbered 147. Find the number of houses on that street? [4 marks]
 - iii. The arrangement of seats in a large auditorium is such that there are 9 seats in the first row, 12 seats in the second row, 15 seats in the third, and so on.
 - α₁) If there are altogether 25 rows in the auditorium, how many seats will be in the 25th row?
 [4 marks]
 - α_2) What is the total number of seats in the auditorium?

[5 marks]

- b. Determine the values of p and q such that $\frac{\sqrt{5}+4}{3-2\sqrt{5}} \frac{2+\sqrt{5}}{4-2\sqrt{5}} = p + q\sqrt{5}$. [7 marks]
- 3.
- a. i. When the polynomial $f(x) = x^3 px^2 + qx + 2$, where p, q are constants, is divided by (x-2), the remainder is 2. When divided by (x+1), the remainder is -10.
 - α_1) Find the values of p and q.
 - α_2) Hence, find f(3).

[10 marks]

- b. A carpenter can make at most 20 tables and at most 30 chairs per day. Each table requires 3 hours of labour and each chair 2 hours of labour. The maximum total number of hours of labour that the carpenter has at his disposal is 96 hours.
 - i. Give three inequalities that express the conditions above.
 - ii. Graph and shade the common region that satisfies these inequalities.

[10 marks]

- 4.
- a. A binary operation, * is defined on the set R, of real numbers by $p*q = p + q + \sqrt{2}$, where $p, q \in R$.
 - i. Determine whether or not * is associative.

[4 marks]

- ii. Find the:
 - α_1) neutral element, e of R under *;
 - α_2) inverse of p;
 - α_3) inverse of $3\sqrt{2}$.

[6 marks]

- b. The first, second and fifth terms of a linear sequence are three consecutive terms of an exponential sequence. If the first term of the linear sequence is 14, find the common:
 - i. difference of the linear sequence;
 - ii. ratio of the exponential sequence.

[10 marks]